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ABSTRACT

An efficient finite element model and solution technique have been

developed for the analysis of unrestrained flexible structures undergoing -

large elastic deformations coupled with gross nonsteady translational and

rotational motions with respect to an inertial reference frame. The nonli-

near coupled differential equations resulting from the finite element

approximation are integrated timewise using an implicit-explicit split

operator numerical integration scheme which treats the stability sensitive

terms of the equation implicitly while the rest of the equation is treated

explicitly. The motion of simple spacecraft structures consisting of -

flexible beams attached to rigid masses and including the effect of control

forces has been studied using three-node eighteen-degree-of-freedom three

dimensional beam elements based on the total Lagrangian description.
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The velocity vector is defined as follows:

u= lim (2.11)
At +0 At

Substituting eq. (2.10) into eq. (2.11),

. Aq

u = lim N* - (2.12)
At+O At

But

q = im At (2.13)
At+0 At

Thus u =N*q (2.14)

Similarly,

u = N* q+ * q N* q (2.15)

noting that N* q is either zero for solid elements or very small in the

case of beam, plate, or shell elements.

2.4 Conservation of Linear Momentum

IfF T is the sum total of applied forces on the body, then conser-

vation of linear momentum requires that the following equation be

satisfied:

f 2
d dR d 2R --

dv ---dv = (2.16)

v v

In eq. (2.16), the integral is defined over the original undeformed con-

figuration. Substituting the expression for acceleration eq. (2.8) into eq.

(2.16) and using eqs. (2.14) and (2.15), eq. (2.16) becomes

M(V + Vo+ T_ . - (2.17)
-0 0 _ S. +Ga+2 P .c LF .
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0 -A3  A2

where A = A3  0 -A l (2.7b)

-A2  A1  0

Applying equations (2.7) to equation (2.6), the cross products can be

replaced as follows:

'I = +-Vo +u+ r + 217u+- 2 r (2.8)

dt 2  .

2.3 Finite Element Expression for Velocity and Acceleration

In the finite element method, the structure being analyzed is divided

into a finite number of sections or elements. Within each element the

exact displacement u is approximated by polynomials containing unknown

constants which generally represent the displacement at a finite number of

points or nodes within the element and on its boundaries. It is these

nodal displacements which are solved for. For time dependent problems,

the displacement u can be written in an incremental form as

u = _ + Au (2.9)

In equation (2.9), tu represents the value of u at time t while Au is the

change in displacement between time t and t + At. In the finite element

formulation the value of Au within each element can be expressed as

Au N*Aq (2.10)

Here Aq is the nodal displacement vector and N* is the matrix of shape

functions and is a function of a set of local coordinates within each ele-

ment as well as the initial angular displacements. The determination of N*

Is given in Chapter llI.

6
.......-..- .



In order to express the motion in terms of the rotating body axes, it

is necessary to express the acceleration of point P in terms of body

axis coordinates. Thus the following expression for the acceleration is S

used:
dV

+ _+ r x r + 2 x r + 2 x (,o x r) (2.2) . ..-.

dt2

dV
where = the acceleration of the origin of the body axis

r = the velocity of the material point p relative to the body axis S

r = the acceleration of the material point P relative to the

body axis

x r = the "tangential" acceleration S

2n x r = the Coriolis acceleration

n x (P x r) = the centripetal acceleration

In terms of the body axis coordinates,

dVo += V + sx V o (2.3)
'Ut- -0 -0

Also note that since r0 = =,

ru •(2.4)

eo

r=u (2.5) S

Substituting equations (2.3) - (2.5) into equation (2.2),

d R

dt2  + x V 0 + u + x r + 2P x u + P x (a x r) (2.6)

In order to simplify equation (2.6) a bit, the cross products can be

replaced by matrix products. If A and B are any 3-vectors, then

A x B = B (2.7)

5
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CHAPTER II

EQUATIONS OF MOTION

2.1 Introduction

For elastic structures undergoing gross translational and angular

motion as well as small or large elastic deformations the motion can be

described by the following three sets of equations:

1. The conservation of linear momentum which is a vector equation

describing the gross translational motion.

2. The conservation of angular momentum which is a vector equation

describing the gross rotational motion.

3. The principle of virtual work which describes the deformations.

If the structure is very flexible, the deformed configuration may be quite

different from the original undeformed configuration. Thus the elastic

deformations will be coupled with the gross translations and rotations, S

especially if the applied loads are deformation or velocity dependent. ..

2.2 Geometry and Kinematics

Consider the deformable body pictured in Fig. 1. A set of mutually

orthogonal axes, xI , x2, and x3 are fixed in the undeformed body at point 0. " -

Point 0 is located a distance Ro from a set of mutually orthogonal inertial

axes XI, X2, X3, centered at point C. The body axes are translating with

velocity V0 and rotating with angular velocity n relative to the inertial

axes. A point P located a distance ro from 0 displaces by u to point P' as _

the body deforms so that it is now a distance r from 0. Point P' is

located a distance R from C where R is as follows:

R= o + r -Ro + r + u (2.1)

-o-

4
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S

flexible structures which are undergoing large elastic deformations coupled

with gross nonsteady rigid body translational and rotational motions with

respect to an inertial reference.

The formation and solution scheme used for this research can be . i .

briefly described as follows. The governing equations of motion are

derived using momentum conservation principles and the principle of virtual

work. The finite element approximation is applied to the equations of

motion and a matrix form of those equations is obtained. The resulting set

of second order matrix differential equations is solved timewise by direct

numerical time integration using an implicit-explicit split operator

scheme. This scheme treatsthe terms which control the stability of the

solution implicitly while the terms which are less sensitive to stability

are treated explicitly. The solution technique developed is tested on

simple spacecraft consisting of long slender uniform beams attached to a

rigid mass and modeled by three dimensional seam elements. The effects of

control forces on the motion of the spacecraft are also considered.

.-.* ..0

..........................................



not the associated modal generalized forces vanish identically. McDonough

[3] considered the formulation of the global equations of motion of an

unrestrained deformable body using translating and rotating reference 0

frames. The motion of the body (including deformations) is of unrestricted

magnitude in the analysis. Fraejis de Veubeke [4] considered the motion of

a flexible body undergoing arbitrarily large rotations with respect to an

inertial frame. The motion was split into a mean rigid body motion and a

relative motion taking into account the deformtions. This mean rigid body

motion is chosen so as to minimize the mean square of relative displace-

ments. Kane and Levinson [5,61 considered different methods for for-

mulating the equations of motion for complex flexible spacecraft. These

methods included momentum principles, D'Alembert's Principle, and .0

Lagrange's equations, among others. They also developed an algorithm for

producing numerical simulations of large motions of a nonuniform flexible

cantilever beam in orbit using the finite element method. Santini [7j has

studied the stability of both nonspinning and spinning flexible spacecraft

in a gravitational field by the superposition of a rigid motion plus a com-

bination of structural modes. Other investigtors [8-17J have also studied .0

these types of problems using both general analyses or in connection with

more specific types of flexible spacecraft. It appears however that, in

spite of the progress made in the analysis of such problems, little

attention has been paid to the development of the finite element method

for the dynamics of unrestrained structures undergoing large elastic defor-

mations coupled with nonsteady gross translational and rotational motions.

With these problems in mind, the objective of this research is to use

the finite element method to determine the time response of unrestrained . .

._ °



CHAPTER I

INTRODUCTION

In order to predict the motion of many types of flexible spacecraft,

it is necessary to accurately simulate the time response of an unrestrained

structure which is undergoing large elastic deformations as well as gross

nonsteady rigid body translations and rotations. For such structures, the

large elastic deformations are coupled with the rigid body motions

resulting in a complicated set of nonlinear differential equations. Such

spacecraft may be simple enough to be modeled as rigid bodies supporting

flexible beams or they may be more complicated structures consisting of

frames, plates and shells in combination with one or more rigid bodies. .

For example, consider a large space structure consisting of a frame made up

of long, slender, flexible beams connected to one or more rigid masses. If

such a spacecraft were to execute a sudden rotational maneuver or reorien-

tation, then large elastic deformations coupled with rigid body motion

would occur. An accurate time response analysis of the motion of the

structure would be necessary in order to predict the orientation of the

structure especially if it were necessary to determine the pointing

accuracy of any sensors which may be attached to the spacecraft.

Extensive research has been done in the field of the dynamics of

flexible spacecraft. The motion of unrestrained flexible structures has

been discussed by Bisplinghoff and Ashley [1] who considered small vibra-

tions of aircraft structures using a modal technique. Ashley [2] also

studied gravitational excitation of very simple elastic spacecraft under

the restriction of infinitesimal elastic displacements as well as cate-

gorizing typical free-free structural configurations according to whether orjo



* A vector the components of which are the time integrals of a

Euler angles

_ Body axis angular velocity S

w Circular frequency

Damped natural frequency - .

max Maximum natural frequency S

no A reference angular velocity
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0 0Initial displacement of the a 1 a2 'a_3 axes

V Volume of the undeformed body

Vo  ~ Body axis velocity

Velocity of the beam tip

XlX, x Body axis coordinates

X1 , X 2 ', X 3  Inertial axis coordinates

x,y,z The ala2,a3 axis coordinates

GREEK SYMBOLS

A factor used in computing orientation angles

B Shear factor
A factor used in computing orientation angles
The angle between the orbital radius vector and the xI axis

y A scalar constant
Angle between angular velocity vector and xI axis

6 Variational operator

_ Linear portion of incremental Green strain vector

AE{ tLocal Ae vector

An Nonlinear portion of incremental Green strain vector

AMn Local An vector

Orientation angles

* , Space-three: 1-2-3 angles

°ei Initial Value of ei

Ao i  Incremental change in e.i

0 Ref A reference orientation angle

Precession rate

u Gravitational gradient damping parameter

Gravitational constant of the Earth

The normalized local coordinates along the beam axis{0

Ed Damping constant

p Mass density

...... .... ..-



r Body axis position vector of a material point at time t

!o  Inertial position vector of the body axis origin

ro  Body axis position vector of a material point at time t =0

rG Instantaneous center of mass location in body axis coordinates

rp Position vector of a point in the cross section of the unde-
p formed beam in terms of the al,a 2,a3 axes

r' Position vector of a point in the cross section of the defor- -
-P med beam in terms of the a ' axes.

rT  Position vector of the beam tip

S Second Pyola-Kirchhoff stress vector

AS Incremental Pyola-Kirchhoff stress vector

OS Initial Pyola-Kirchhoff stress vector

St&  Local Pyola-Kirchhoff stress vector

S Local initial Pyola-Kirchhoff stress vector

OSo,9 OS yOS The constant, y, and z components of OS
-0 y' -Z

S Portion of the body surface over which tractions are applied

t Time

T Transformation matrix between the local and global
coordinates

I Applied surface force vector

At Time step increment

TMOM Time period during which a moment is applied

tn Time at state n

TO  A time period

Tol Convergence tolerance

u Displacement of a material point

u Initial displacement vector

Au Incremental displacement vector

.20  Displacement of the 24,12,13 axes
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0

Ment Moment due to centrifugal force

nt Moment due to the centrifugal force acting on the rigid mass
-centR
Mcor Moment due to the Coriolis force 0

Generalized mass matrix
Applied moment due to the gravitational gradient

mR Mass of the rigid mass

Total of applied moments about the inertial axes 0

mT  A vector representing the right hand side of the momentum
equation

Mo  Total of applied moment about the body axes

Mo,M ,Mz  The constant, y, and z components of the mass matrix
y -

M A matrix relating the angular velocities to the time deriva--e tives of the orientation angles

N Total number of elements S

n Refers to the state of the body at t = tn

N* Matrix of shape functions

*N*,N, The constant, y, and z components of the shape function .
matrix

p Gravity gradient frequency

P Matrix coupling the nodal acceleration with the body axis
acceleration 0

P Matrix of initial stresses

-So,sy,Psz The constant, y, and z components of the Ps matrix

o A submatrix of Ps s

q Nodal displacement vector

Aq Incremental nodal displacement vector

Oq Initial nodal displacement vector

Generalized nodal displacement vector

Predicted value of generalized nodal displacements

R Inertial position vector of a material point at time t S

xii I



G Shear modulus

G Matrix of the instantaneous center of mass of the body

H Coupling inertia matrix between the nodal acceleration and
the angular acceleration of the body axes

Angular momentum vector

Angular momentum due to the displacements of the beam

H FtDo The value of HD at t = To
th

H. The j- Gaussian integration point weighting factor

hothoythoz Parameters used in calculating the D. matrix

IB Mass moment of inertia of the beam

IR Mass moment of inertia of the rigid body

IT Instantaneous mass moment of inertia matrix

I ,I Undeformed beam element area moments of inertia

1.3 The 3 x 3 identity matrix

J Jacobian Matrix

K Basic stiffness matrix

KE  Total elastic stiffness matrix '-

GE Generalized stiffness matrix

K* Effective stiffness matrix
G

Ks  Initial stress stiffness matrix

KTKW Control force constants

Beam element length

LB  Control constant

Li j Element of the Jacobian matrix

ytY{j Parameters used in calculating the DL matrix

M Total mass of the body

M Mass matrix

Mc Control constant

xi _

.',,_.. . .,' - . .w..... . . .....,.. .'k.l.,iml , • , -.. . . . .. . ..--. -: ,• - -_



D The matrix relating the Ae vector to the derivatives of the
- incremental displacements-

D. ,2cz The constant, y, and z components of the D matrix

EI Eo  Young's modulus

E Green strain vector

Eij The ijth Component of the Green strain tensor S

E Green strain vector at state i

AE Incremental change in the Green strain vector

AEi Incremental change in ijt- component of the Green strain
1J tensor

SE The virtual Green strain vector

th6Eij The ij th component of the virtual Green strain tensor

EIl  The local Green strain vector

F Applied body and inertial force vector

FB  Nodal applied body force vector .

Applied body force term excluding inertia terms

Fc  Force vector in displacement equation due to centripetalacceleration

Applied control force

fc Force vector in linear momentum equation due to the centripe-
tal acceleration

Generalized force vector

R Effective force vector _

Fq A vector representing the right hand side of the displacement
equation

fs  Initial stress force vector

Vector of applied forces

ftT A vector representing the right hand side of the linear
momentum equation

Fo  Vector of applied nodal forces _

x
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LIST OF SYMBOLS

A Undeformed beam element cross-sectional area

a i  The i-. h gaussian integration point

An Higher order terms in the virtual work integral

A The matrix which relates the derivatives of the displacements
to the nodal displacement vector

Ao,A yA z The constant, y and z components of the A matrix

A set of mutually orthogonal axes fixed in the undeformed
beam

aja ,a A set of mutually orthogonal axes fixed in the deformed beam

0.0 0
°a1 ,a 2 ,°A 3  The values of alA,a for state i

B Matrix which relates the incremental nodal displacements with
the incremental strains

Bi The i component of the B matrix

B The local B matrix

B Matrix which relates the incremental nodal displacements to
the initial stresses

B i  The i component of the Bs matrix

Bt The local Bs matrix

C The gyroscopic matrix
The material property matrix

CoCcygz The constant, y and z components of the gyroscopic matrix

C The local material property matrix

CD) Direction cosine matrix

The y component of the matrix of orientation angles

d A vector the components of which are the time integrals of Vo

kk
Dk  The kt- -h- partition of the A matrix

k _k k k

'D 90D The constant, y, and z components of the matrix
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rI

where

M =f p dv = Total mass of body (2.18)

V

N fS. p N* dv (2.19)i=1J"
G f 7 dv

-

(2.20)

V
I

!C p r dv (2.21)
V

.6

The nodal accelerations q are coupled with the translation of the body

axes and the P matrix represents the mass of the finite elements in the

coupling terms. Note that P is the summation or assembly over all N finite

elements. The elements of the G matrix represent the location of the

instantaneous center of mass. The fc vector is the force due to the-C m

centripetal acceleration. Details of the P, G, and fc matrices are given

in Appendix C. Rewriting eq. (2.18) with all the acceleration terms

grouped together results in the following:

T + G + M V0  T (2.22)

where

f= FT- M - -2 P pT a- fc (2.23)

2.5 Conservation of Angular Momentum

If !T is the sum total of the applied moments about the inertial axes,

then the conservation of angular momentum requires that the following
eq o bq- equation be satisfied: -

................. I .*--.... . ..... .. ..



d f(R x ) dv = x dv =IT (2.24)-- -- t 2

v v 0

Substituting eq. (2.1) into eq. (2.24) and using eq. (2.16), eq. (2.24)

becomes

( 2

R xF + x--.) dv (2.25)-T -o -T + P f . dt2
V

But the applied moment about the inertal axes can also be written in the

following form:

T = Mo + Ro x FT (2.26)

Here M 0 represents the applied moment about the body axes. Thus equation

(2.25) reduces to

d 2RfO P (r x - dv (2.27)

vD

Now, substituting eq. (2.8) for the accelerations into eq. (2.27), and

using eqs. (2.18) - (2.21), eq. (2.27) becomes as follows:

M GTV GT V HT
Mo a T  + GT -o H + IT a+ Mcor Mcent (2.28)

where

iT = p dv (2.29)

V

HTZ N /dv

T I V"N* dv (2.30)

V.

9"
. .. .9.
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=2 J p7 dv (2.31)

!cent
V 0'

The IT matrix represents the instantaneous moment of inertia matrix of

the entire structure. The HT matrix represents the distributed moment ofiS

inertia matrix of the finite elements and when multipled by the nodal acce-

leration vector q provides the coupling term between the rotary inertia due

to the elastic displacements and the rotation of the body axes. The Moor

and Mcent vectors represent moments due to the Coriolis and centrifugal

forces respectively. Details of IT, H or and Mcent are provided in

Appendix C. Expressing eq. (2.28) in a form similar to eq. (2.23) results

in the following:

HT !IT (2.33)

where

~ ~Mt(2.34)IrT -- - V-o "!cor - -cent (.4 ~ .:-'

2.6 Principle of Virtual Work

The principle of virtual work is used to describe the elastic displa-

cements of the structure. Using tensor notation, the principle of virtual

work for a solid body undergoing large deformations can be written as

follows:

S :6E dv- F. 6u dv- f 6u ds= 0 (2.35)

v v S "

10
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The first integral represents the virtual work done by the internal forces

where S is the second Pyola-Kirchhoff stress tensor and 6E is the virtual 5

Green strain tensor. The second integral represents the virtual work done

by the body force F. The virtual displacement is represented by 6u. The

third integral represents the virtual work done by the applied surface P

tractions T. The portion of the surface over which the tractions are

applied is S .

Now, consider the second integral in eq. (2.35). The body forces 1P

acting on the body are as follows:

- F = -p Li + Fb (2.36) 3
- dt2  '

The first term represents the inertia force while Fb represents any other

applied body forces such as gravity. If eq. (2.36) is substituted into eq. p

- . (2.35) and if eqs. (2.8), (2.10), (2.14), (2.15), (2.18) - (2.21), and

(2.29) - (2.32) are used, then the second integral in eq. (2.35) becomes as

follows for a single element:

r-. 6g.(M .P ,

F 6udv = Q + H + P + C + P V +F -F (2.37)

where

M p N*T N* dv (2.38)

v

C= 2 p N*T  N* dv (2.39)

v

F= P NT g2 (r° + u) dv (2.40)

v

..-



. . . . . . . . . ... . . . - '--. _r ' .. . . . . -.,_ .. -Tj .

0

L BT Fb dv (2.41)

Note that M is the usual consistent mass matrix. The C matrix is the

gyroscopic matrix which is skew-symmetric and represents the contribution

of the Coriolis acceleration to the inertia force. The F vector is the

force vector due to the centrifugal force. Finally, F8 is the applied force

term due to gravity. Details of eqs. (2.38)-(2.41) are given in Appendix

D. In addition, the volume integrals are evaluated over the original unde-

formed volume.

The third integral in eq. (2.35) is treated in the standard fashion

for finite elements. .0 -TJ r uds= 6. (2.42)

a- -

Here F is the vector of applied forces at the nodes which result from the

applied tractions.

2.6.1 The Elastic Stiffness Matrix

The application of the finite element approximation and a trapezoidal

rule integration to the first integral in the principle of virtual work

leads to a system of nonlinear equations that can be solved by

Newton-Raphson iteration. With this iteration in mind, the displacements

U, the second Pyola-Kirchhoff stress and the Green strain tensor E are

written in incremental form as

u = u + Au (2.43a)

S= 0S + AS (2.43b)

0
E E + AE (2.43c)

12
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where 0u = Displacement vector at state i

S = Second Pyola-Kirchoff stress vector at state i

E = Green strain vector at state i

Au -Incremental change in u between states i and i + 1

LS = Incremental change in S between states i and i + I
AE = Incremental change in E between states i and i + I.
AE = Incremental change in E between states i and i + 1

Note that i refers to the ith iteration in the Newton-Raphson iteration.

Substituting eq. (2.43) into the first integral in eq. (2.35),

f 6E~ S dV =J 6 ET S dV + J 6 ET AS dV (2.44)

V V V

The constitutive law may be written as

AS C AE (2.45)

where C = Material property matrix

The material property matrix C may in general depend upon state n. All the -.

materials considered here, however, are linearly elastic which results in

the C matrix being constant.

Substituting eq. (2.45) into eq. (2.44),

f f f6 ET S dV = f ETOs dV + 6 ET C AE dV (2.46) "-

v v v

Now, using tensor notation, the Green strain tensor can be written as:

au. au. auk au
E + +  (2.47)i j 1 ax a ax~

1 a6u. ~ . akau 3 ~
also 6E.uj uk  6uk + uk ) (2.48)

1 "- ax ax. ax ax ax.

13
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and ui = ui + A~U (2.49)

Substituting equation (2.49) into equations (2.47) and (2.48) results in

E. 0 0E. + aE. (2.50)

6E = 6e ij + 6i (2.51)

a u 1  a u. a u kawhere O j = a + -a i + -x --- (2.52)

AE Ai + Anj(2.53)

9AU. aAU. ' ;A ak Auk
1 uk k kukAcij+ -x + -ax + -)(2.54)

a5u. 36U. a u a D au a6uk
.1 + ... ..+ (2.55) .ax. ax, ax ax. ax1

aAU au
~Ii I k k (2.56)

= auk a~k + 3uk a~k (2.57)

Note that AThjj is quadratic in Au1. Now, substituting equations (2.51) and

(2.53) into equation (2.46) and using matrix notation results in

6f ES dv f C C Acdv+J 6noS dv+ I C ~TSdV + A

V V V V(2.58)

14
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where A = Higher order terms, i.e., terms nonlinear in Au.

2.6.2 Finite Element Approximation

The finite element approximation to the incremental displacements bet-

ween iteration steps i and i + 1 is as follows:

Au = N* Aq (2.59)

where N* = Shape function matrix dependent upon state i

Aq = Nodal displacement between states i and i + 1

The virtual displacement 6u can thus be expressed as follows:

6u = N* 6q (2.60)

Also, as will be shown in Chapter 3, it is possible to express the incre-

mental strains Ac within each element as follows:

_ = B At (2.61)

Also, 6c = B 6q (2.62) -

Ji
where AT = LAe 1 1 Ac2 2 Ac33 2Ae 12 2A:13 2Ae 2 3 J (2.63)

In addition, it will be shown that

nTos = TS Aq (2.64) -

If equations (2.61) - (2.64) are substituted into the integrals on the

right-hand side of equation (2.58), these integrals, when taken over the

volume of the ith element become:

f T Adv. sT (~ TC~v T
6 T C Aa dv 6 T  T C B dv) 6 i A. (2.65)

v i v i 1 -1 ,

15V

15" - .-- |
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S S,

6fTo d~ T TJ T (.6

6CSdv 61 B~ (J B dv)= TFS (2.67)

where K. J BT C B dV =element basic stiffness matrix (2.68)

K = Bs dV =element initial stress stiffness matrix (2.69)

S -S

T~ =TOS dV =element initial stress force vector (2.70)

Thus, if the higher order terms An are neglected, the virtual work

expression, equation (2.58), becomes when summed over all N elements,

-s-S

v

Assembling the elements in the usual way,

f6ES dv 6_qT ( Aq jFS) (2.72)

v

16



where K= K + K = Total global elastic stiffness matrix (2.73)

FS = Global initial stress force vector (2.74)

Finally, by using eqs. (2.71), (2.42), and (2.37), the virtual work

expression can now be written as follows:

M q + H + P o + C I + Aq= (2.75)

where F = F +F - F -F -P-V (2.76)
-q o B -c -s -- Yo

Thus, Eq. (2.75), (2.33) and (2.22) are the three sets of nonlinear coupled

equations of motion for the unrestrained system shown in Fig. 1. S

The next section developes the element stiffness matrices and initial

stress force vector for the three node, 18 degree of freedom beam element.

.7

o.S

0 iii-'

-S °'..•.

°' .
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S

CHAPTER III

DEVELOPMENT OF THE STIFFNESS MATRIX FOR THE THREE NODE BEAM ELEMENT S

3.1 The Three Node 18 Degree-of-Freedom Beam Element Geometry

In Figure 2 is shown a section of the beam both before and after

deformation. It is assumed that during the large deflection that there can

be large rotations but that the strains remain small. Also, it is assumed

that there is no warping of the cross section, i.e., plane sections remain

plane. The following quantities are then defined:

1' 12' A3 - a set of mutually orthogonal axes in the undeformed

beam, centered at point 0 with 4 tangent to the

reference line (beam axis)

a' 8, a - a set of mutual orthogonal axes in the deformed beam
2 3

centered at 0' with a and a' lying in the deformed

cross-sectional plane

o- Position vector of point 0

X= + rp = Position vector of a general point P in

the plane of the cross-section

20 = Displacement of point 0

u= Displacement of point P

Note that both a and a as well as and a remain in the cross-sectional

plane because of the assumption that plane sections remain plane. Thus aj'

and a' represents the orientation of the 2' 83 axes after their

rotation due to the deformations.

From the geometry in Figure 2, _

u =0 + r' rp (3.1)

-p -p"

18.-



Next, define a local coordinate system, x, y, z, such that x, y, and z are

the a 1, -2' and a3 coordinates respectively. Thus,

r = ya 2 +za 3  (3.2)

and X=X + r (3.3) -
- -- p.

Also, because the cross section only translates and rotates (and doesn't

distort),

r y + z (3.4)

Substituting equations (3.2) and (3.4) into equation (3.1) yields,

u -+(a -a 2 )y+ (a'-a 3 1 z (3.5) .O

In the Total Lagrangian description all variables are referred to the ori-

ginal undeformed configuration. Thus, it is necessary to determine a' and=2

a in terms ofa 1 , a2 and a3. In order to do that, a way of describing the

rotations must be found. There are many well known ways of doing this,

probably the best known way being Euler angles (Fig. 3a). Another way of

doing this is by using space-three or body-three angles (Figs. 3b, 3c)

[34]. In the space-three 1-2-3 description, a1, 2 and a3 are rotated suc-

cessively about three separate axes as follows:

1. First, rotate by an amount 01 about the original a1 axis.

2. Next, rotate the new configuration e2 about the original a2 axis.

3. Finally, rotate the last configuration e3 about the original a3

axis.

The body-three 1-2-3 sequence is similar except that instead of rotating

about the original axes, the rotation is about the body axes. It is also
1

19 .'- 2"ii
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possible to use sequences other than 1-2-3, for example, a space-three

2-3-1, or body-three 1-3-2 or any sequence which results in the required

orientation is possible. In the case of a 1-2-1 or 3-1-3 sequence or any

sequence in which there is a rotation about only two axes, the rotation

would be referred to as a space-two or body-two rotation. Note that the

Euler angles correspond to a body-two 3-1-3 rotation.

For the purpose of this research, the space-three 1-2-3 rotation

sequence was chosen to describe the rotations because it seemed the most

straight forward and because none of the others offered any particular

advantages over it.

Once a method for describing the rotations is chosen, the relationship

between ai, t , a' and a,, 22, 2. can be determined. For the space-three....

1-2-3, this is as follows:

a = Cosa Cose3a + Cose2 sine a-sine a36a
-2 -l1 3- 2 2-23 (.a

a'=(sine1 sine2 Cosa3 sine3 Cosa,) a, + (sine1 sine2 sine3

++ sieceosae3 Cosa,) a2 + 1ieICs 2 -13 (3.6b)

a= (Cosa1 sine2 Cosa3 + sine3 sin) a1 + (Cosa1 sine2 sine3

- Cosa3 sine1) a2 + Cos Cose2a (3.6c)

Next, the displacements and rotations are written in incremental form

u = u + AU (3.7)

0S
= u + 6u (3.8)

Y 0 -0 -0

ek = ek + Aek, k =1,2,3 (3.9)

20



If equations (3.6), (3.8) and (3.9) are substituted into equation (3.5)

and higher order terms are neglected then the following results:

U o -2 " + z (a' - a3 ) (3.10)

&u :u o + (y D + z E) AS (3.11)

where 0a! = a N 0e i 1,2,3-a_, :-i (°, ° 02,°3) i= ,3

AeT = LAO1 A02 A 3J

D = D (eel, Oe2, 0e3)

E = E (001, 002, 003)

The elements of the 3 x 3 matrices D and E as well as expressions for

- a., i = 2,3 are given in Appendix A.

3.2 Finite Element Approximation

The three node eighteen degree of freedom element is pictured in

Figure 4. The local coordinates E, y, z are normalized such that the ori-

gin is at the center and the coordinate varies between -1 at one end of .

the beam and +1 at the other end. The transformation between the global

coordinates and the local coordinates is thus as follows:

3 5
X = X N()X + y a2 + z a3  (3.12)
- i=l-0 -2 3

Here Xoi are the coordinates of the three nodes and Ni(&) are the shape

functions which are

NI(E) = (E - l) (3.13a)
2

N2(& ) = 1 -E (3.13b) S
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Thus the integral is first evaluated over the original cross-sectional area

of the undeformed beam element Ai and then along its length ti" Next, eq.

(3.83) is substituted into eq. (3.85) and the various matrix products and 0

area integrals carried out. It is assumed that the longitudinal axis of the

beam is through its centroid and that the cross section is symmetric. The

following equation then results: 0

.= (0) C_ + I (BZ)T C B1 + I B1' CT B2' dt (3.86)

ft 0 -y_ y 2 -2]
ki

where A = dA (3.87)

A i

z= y dA (3.88)

A. 
S

: f 2 dA (3.89)
lyy

A.

Note that A, I and I are merely the area and area moments of inertia

of the beam cross-section. The integration along the length of the beam is

done numerically using Gaussian integration [28]:

n I
K(EB)T( Ct Bt I (BI)T C~ B +I C B Hit

j-, 0 - 21

(3.90)

The a. are the Gaussian integration points and H. represents the weighting

factors while n is the number of integration points used. Since the
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For an isotropic material, the local 3 x 3 matrix of material properties is

then

E 0 0

C = 0 BG 0 (3.81)

0 0 BGf

Here E is the Young's modulus of the material, G is the shear modulus, and

B is the shear correction factor. For an isotropic material with rec-

tangular cross section, B is equal to 5/6.

3.7 Calculation of the Stiffness Matrix and Initial Stress Force Vector

It is now possible to calculate the element stiffness matrices and

initial stress force vector as given by eqs. (3.46) - (3.49). First, note

that the local B matrices are formed via eqs. (3.44) as follows:

B T B., i = 0,1,2 (3.82)

Thus Bt B~+ +z B (3.83)-0- BI+ -2

Also note that before the B matrices can be formed, it is necessary to-s

transform the stresses from the local coordinates using eq. (3.40):

S= TT °St (3.84)

The Psi matrices can then be formed using the elements of the OS vector

from which in turn the Bsi matrices can be formed. To calculate the stiff-

ness matrix, first note that the volume integral in eq. (3.46) can be writ-

ten as follows:

i f (B )T C Bt dV = (B) T C t Bt dA dt (3.85)

Vi t i -,
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along its length. Thus, in a manner analogous to eq. (3.70), the SO

vector can be written as

°s °s= + y 0S +z szS(3.77)

also,

Ps =Pso + y Psy + z _Psz (3.78)

Finally, if eqs. (3.59) and (3.78) are substituted into eq. (3.76) and the

matrix products carried out, the following expression for Bs results:

Bs = BSO + y Bsl + zB 2 +yz Bs3 + y2 Bs4 + z
2 Bs5  (3.79)

where B =AT P A (3.79a)
-:S -0o-s -o

BS =AT P A + AT P .A +AT P A (3.79b)

B3 A TP A + A TP A + AT P A(37c
-- s2 -z -s -0 -O -s z -0 --O -s o -;3.9c

B AT(Ps A) T+ ( oA+PsA + T( A+P A) (3.79d)
S53 - y- A+P - - - z -5Z-O -Z+A(S-a -S0-Z

- 5 y-Z .'"- -+A(

13 =ATP A + AT P A + A TP A (3.79e)
S ;-'Y -so ;-Y -0 -5-y -Y -y -Sy -0

B3 =ATP A +AT P A + AP A (3.79f)

3.6 The Material Property Matrix
I

The material property matrix C will in general depend upon the state 7

of the structure and as such it is a function of time. All of the

materials considered here, however, are linearly elastic which results in

the C matrix being constant. The form of the local incremental stress

strain relation is as follows:

AS: C AE (3.80)
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B =B o + yB + z B2  (3.70)

Next it is necessary to determine the form of the B matrix. From eq.

(2.67),

6 = T s  (3.71) •

Using the expression for 6n given in eq. (2.57) it is possible to show that

the following is true:

To a6u T -Au (3.72)6nT ~ = - f s (3.72)

where

ES 0 PO 0 (3.73)

0 0 Po-
-- s'i'o-" -.

[ s11  s12  1
S°12 S22 S23 (3.74) -

Thus, using eqs. (3.58) and (3.63), eq. (3.72) can be written as

6 Ts 6T -AT Ps A a (3.75)

or Bs =T Ps A (3.76)

Since the incremental stresses at each step are calculated by using the

constitutive law eq. (2.45) and are dependent upon the strains Ac, it

follows that S will vary over the cross section of the beam as well as

32
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0 3
N__ E N.( (3.66)

az i=l

•

Using eqs. (3.64) - (3.66) as well as eq. (3.52), the elements of the

expanded D matrix can be obtained.

D =D + y D + z D (3.67)-e -Co -ey -z

The terms of DCO, D and D are given in detail in Appendix B.

Now we are prepared to calculate theBmatrix given in eqs. (2.61) and

(2.62). Substitute eqs. (3.58), (3.59), and (3.67) into eq. (3.50) and

perform the matrix multiplications to obtain the following:

A_: B A2q (3.68)

where B B0 + y Bl + z B2 + yz B3 + y2 + z2 B5  (3.69)

B= D Ao  (3.69a)
-Co 0

Bi 2-y Ao + Deo A (3.69b)

B =D A + D A (3.69c)
-2 -ez ;o -Co -Z

A3 D Ay + D AZ  (3.69d)-ez - -Cy -z

B4 =D A (3.69e)
Cy -y

B5 =D A (3.69f)5 -Cz Az

Because they are fairly insignificnt and add unnecessarily to the

complexity of the stiffness matrix, the higher order terms yz B3, y
2 -B4 and .

z2 B5 are neglected. Thus the B matrix can be written as follows:

31
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-1 1

_ -y.-'o. .  .

and A = (3.60)

- Do

Az = -I D21
Ay J-1 2' (3.61)

J-z

A _z (3.62)

O- I D 3z t

z0

It should also be noted that an expression similar to eq. (3.58) holds for

{-M 1.. Thus,

ax

BSU,

-2tu A 6q (3.63):"i): -

The next thing needed to do is to determine the elements of the D matrix.
0uThis will require the evaluation of derivatives like __.. These terms can

be determined by first differentiating the expression for °u given in Eq.

(3.14) as follows:

0o 3 aNi  3 aNi  .i.- ..
at at at -22i + 3 [y (0a - a + z (0a' -a3)i](3.64 )

a):..oi i: :

0 3
-au = . Ni(&) (0 . a2)i (3.65)
ay i:I)
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The next step in the derivation is to express the vector of derivatives

O- T in terms of the nodal displacements Aq. This can be done by differen-

tiating the expression for the finite element approximation to 4u given in 0

eq. (3.15).

aAu 3 aNi  3 aN.E -
- A - A i + r -- I (y + z Ei Ae (3.53)

Au 3
a- E N i( Di LeBi  (3.54)

aAu 3
- - N i( Li  A2i  (3.55)"

3z.

By using eqs. (3.53) - (3.55) as well as eq. (3.24), it now becomes
3Au

possible to write {--.1 as follows:

- Ij-l D. 1
- J D Aq (3.56)

J- 1  D3  - '

where Dk = k + y D W + z k k = 1,2,3 (3.57)

The elements ofD k are composed of the elements from the Di and

matrices, as well as terms from the shape functions Ni and their deriva-

tives. The exact composition of the D matrix is given in appendix B.

Equation (3.56) can be rewritten as follows:

3 Au
A A q (3.58)

where A= Ao + y Ay + zAz (3.59)

29
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K B
s= dV (3.48)

vi  
.' I..:

= / (B-)Ts_ dv (3.49)

V. '

3.5 Calculation of the B and BS Matrices

The calculation of theBandBs matrices used in the integrals of

equations (3.46) - (3.49) is now considered. The incremental strain ASij

given in eq. (2.59), when written in vector form as in eq. (2.66),

can be expressed as the following matrix product:
aAu ;. ...

D : D -- j1 (3.50)

aAu 3Au au 1 AU 1 AU 2 AU2 aAu 2 aAu3 AU3 aAu 3
where {a-ll [- x x2 a77 a aX aX3 aX ax2  ax (3.51) .•

- ° u 1 2 3 12 -° u 3. 3

0 0 0

I + 0 0 a 0 0 aX3  0 0

aui aux au
0 0 0 0 u 0 0 0

x2  2

°uI  a°u2  a°u 3  0D= 0 0 0 1 0+x 0 0-a3 a3  ax3
0 0 0 u a 0°uI  ° 0 °u2~. -u2  + 0

a°2  a°u ax2  ax ° 0aax a- -

a°U aU a u a u auu auu 3
1 1 0 1+ 2 0 2 3 0

ax3  ax1  ax ax ax3  a
0 000

a a ~ 2 0 3~u a~ 3 u3
0~~ 1+01

ax3  ax2 ax ax2

(3.52)
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where

[. Ell 20~ 2E~ 3
1 12 13

The elements of T are given in Appendix A. Since all the other quan-

titles involved in equation (3.34) are tensors, similar expressions hold

for them also.

AC T AE (3.37).............

6E = T 6e (3.38)-

6n 1T6n (3.39)

Ost =T S (3.40)

Next, substitute equations (2.64) -(2.66) into equations (3.37) -(3.40) -

=e B~ Aq (3.41)

6E2 B 6q (3.42) -

(6n t T BS (3.43)

where B~ =TB (3.44) K

BX BS (3.45)-s -S0

Finally, the stiffness matrices and the initial stress force vector,

equations (2.73)-(2.75), become,

f1= (B,)T C' B' dv (3.46)
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3.4 Assumptions on Stress and the Transformation Matrix

The following assumptions have been made concerning the local stresses

in the beam: 0

221 SL3 IS231< I Sill

Here the t superscript refers to the local a1, 2, a3 coordinate system. 0

The S2 t t22 S33 and 23 stresses are thus considered small enough to be

neglected.

Since the virtual work integral is a scalar, it is invariant under any 0

coordinate transformation.

6 ET S'dv ET S dv (3.34)

v v

The transformation from local to global coordinates using tensor notation is

as follows: .

E S (i a a) E (3.35)rs -p ariq -s pq

where i = global unit vectors •

For example,

Ef- 2 E +a2 E +a2 E +211 a11 E11 + 12 E22 + 13 E33 +a 11 a12 E12

+ 2all a13 E13 + 2a12 a13 E23
13 13 -13 2

Similar expressions hold for E and E A transformation matrix T can

thus be defined relating the local and global strain components: -.

Et = T E (3.36) _
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ax
aE 2 (3.28a)

ax
=82 (3.28b)

=a (3.28c)
az

Thus, the Jacobian matrix is as follows:

11 7 12 7 13

Sa1 2a 23 (3.29)21 22 23

To determine J , it is first necessary to evaluate the determiinate of the

Jacobian. First, note that

a, (3.30)

But ~ x 3 = 1 (3.31)

Thus aI= (3.32)

and II-~(3.33)

This expression for the determinant of thle Jacobi an will prove useful in the

evaulation of various integrals.
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ax1

or Ta a (3.23)

a az a x3

where J= Jocabian matrix

Solving for the desired derivative,

aT2 =J- a (3.24)

a a
3

In order to evaluate the Jacobian, equation (3.12) is used.

3
X iE 2+z a (3.25)

For straight beams, however,

X a,7~ (3.26a)
X02 -01

t a, (3.26b)
X03 -01

where t =Length of the beam element

Substituting equations (3.26) into (3.12) and using the expressions for the

shape functions given in equations (3.13) results in

+ ~ ~+l~~ *' ~ ~2 ~(3.27)

Using equation (3.27) to evaluate the derivatives in the Jacobian,
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Au = N* A (3.17)

where N* + y N* + (3.18)

[NI N2 N ] (3.19)
-o 13-2-3 3-33

N*= [0 NID 1 0 N2D2 Q N3D3] (3.20)-y 2.. . 32

N*= [0 NIE 1 0 N2E2 0 N3E3] (3.21)

Note that N*, N* and N* are 3 x 18 matrices since i3 is the 3 x 3 iden-0o-y -z-0

tity matrix and 0 is the 3 x 3 null matrix.

3.3 Derivatives and the Jacobian

In order to evaluate the integrals in the virtual work expression, it A

is necessary to evaluate terms that include derivatives with respect to X.

Since the displacements are expressed in terms of the local coordinates, it

is necessary to find an expression which relates derivatives with respect to .0

the local coordinates to derivatives with respect to X. This can be done

using the chain rule as follows:

axl aX2  aX3  a

aE O a a& ax.

a = a1  ax ax3 ~ ~ ->(3.22)

2

a lax1  X2 X3  a

3z az az az ax3 )

23
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N3()= -7 E + 1) (3.13c)

In the finite element approximation the displacements within each element

are assumed in terms of the shape functions as follows:

3 3 3
° N() u + y E Na()+ z z Ni()(0 a'-a (3.14)il -oi i 2 -2 =l - - 3 .

3 3
Au = E Ni() Auo + i Ni(E) (y D.i + z Ei) A0. (3.15) S- i =l 1 - 0  i 1=1 111 1

il

Figure 4 shows the 18 degrees of freedom for the 3 node beam element used

here. The subscript i refers to the appropriate node and the displacements 0

are expressed in terms of the nodal displacements. Thus, for i = 1,2,3,

00

i-" oO-

Aeiu A (X0i

-'>- 0: 2~ X i ".0'3iA0i = AO (X ))..
-1 - ij°

LE (°li, 
002i , 03i)

Now the displacements need to be expressed in the form of equation (2.10).

To do this, define the nodal incremental displacement vector q as follows:

T= T T T T T T (.6
.-T  L~u l , I _I A , AUl, u3, A0 b J (3.16)...-..

Rewriting equation (3.15) in terms of equation (3.16) and using matrix

notation,

P-I
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expressions in eq. (3.90) are no higher than 4th order polynomials, a

three-point numerical integration would give exact results. However, these

beam elements allow transverse shear deformations similar to a Timoshenko

beam. It is well known that when the finite element approximation is

applied to such beams which have a large length to thickness ratio that

exact integration results in overly constrained equations which leads to .

inaccurate results [361. One remedy to this situation is to use reduced

integration [29,30]. Therefore a two point integration (n = 2) was chosen

for eq. (3.90). For n = 2 the Gaussian integration points are a, : -I/{ S

and a2 = l/1V3while H1 = H2 = 1. Also, from eq. (3.33), lJ = V . Thus,

eq. (3.86) becomes

20K E {FA (B) T Cf BZ I  (B T CEB + I (B)T C' B'1 (3.91)

7 (B0) _Z z z Z-) cy .=2. Tt: E a
j=l

The initial stiffness matrix and force vector are calculated in a simliar

manner. If eq. (3.79) is substituted into eq. (3.48) and the integrals are

evaluated as in eq. (3.85), the following results are obtained (again using

2-point numerical integration):
I-" 2

Ksi j= Izz (A s4 + Byy s5) (3.92)

Finally, if eq. (3.83) and (3.77) are substituted into the expression for

the initial stress force vector given in Eq. (3.49) and the integrals eva-

luated as above, the result is as follows: .
- 2 " tT 11 y 2TO.z•=

[A (B')T 0S + I (B (3.93)
j3l zz yy =
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The element stiffness matrices and force vectors are assembled in the usual

way to obtain the global stiffness matrix and initial stress force vector.

O

.-.. . _''.
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CHAPTER IV

NUMERICAL TIME INTEGRATION SOLUTION SCHEME

4.1 Introduction

There are many methods which can be used for the numerical time -

integration of equations (2.17), (2.22), and (2.75). Generally speakiny,

these methods can be classified as either explicit or implicit schemes.

For any of these schemes the time variations of q and q are discretized

using an m-step, one-derivative, linear multistep difference operator

p p
qn+l = i a i 9n-i + At E bi qn-i (4.1a)i=o i:-I

m . m .
q2+l = E ci q + At E di q,-i (4.1b)

i=o i=-]

where qn- = q(t n-i )

2~n-i = tn-i)

n-i q(tn-i)

At : time increment tn+ - t
nl n

In any particular application of equations (4.1), any of the scalar
constants, ai, bi, ci or di may be zero. If both b_ and d- are zero then

the solution scheme is classified as explicit. If either of b.1 or d are

nonzero then the scheme is an implicit one and equations (4.1) will

generally be solvable only by an iterative procedure unless the differen-

tial equation is linear. In this case it is possible to solve explicitly

for qn+l

38
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Explicit schemes are computationally simplier than implicit schemes

since they don't involve the solution of an implicit equation. However,

with explicit methods it can be shown [31,32] that the stability of the 0

solution is dependent upon the time increment At. For linear systems, the -

maximum time step for a stable solution is related to the highest natural

frequency of the system as follows: 0

At < Y/wmax (4.2)

Here y is a scalar constant dependent upon the ai - di and wmax is the highest 0

frequency of the system. For nonlinear systems, the natural frequencies of

the system generally change with time as the configuration of the system

changes. Equation (4.2) however, will still be true. For certain "stiff" ..

systems with widely varying natural frequencies, the time step necessary

for stability can be so small that it becomes computationally time

consuming. 0

Implicit schemes, on the other hand, generally have much less

stringent stability requirements. In fact, some methods (e.g. Newmark's

method) are unconditionally stable with no time step limitations. The 0

accuracy of the solution then becomes the only limitation on the time step

size.

For the example problems discussed in this research, a three node

beam element is used. For small displacements, this is essentially a

Timoshenko beam. The natural frequencies for a linear cantilevered beam

modelled by these elements are shown in Tables 1 and 2 as a function of the _

shear factor chosen. As is obvious from Tables 1 and 2, using these beam

elements will result in a stiff system. The very high frequencies are asso-

ciated with the shear modes of the beam and even through they are only a 0
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small component of the beam response, they control the stability of the

numerical solution. Even when very small shear factors are used, the high

frequencies due to shear will result in unacceptably small time steps for 0

stability. Thus even though we are interested in nonlinear solutions, the

linear solution clearly indicates that an implicit scheme is necessary.

Probably one of the most straight-forward and widely used implicit 0

schemes is the Newmark method or trapezoidal rule [33]. However, most

structural dynamics problems involve second order differential equations

which include only symmetric matrices whereas the problem here includes a 0

nonsymmetric gyroscopic matrix C. If the Newmark (or any other strictly

implicit method) is used it would result in having to invert a nonsyminetric

matrix which involves a good deal more computational time than inverting a .

symmetric matrix. In addition, many of the terms in the linear and angular

momentum equations are nonlinear ones involving the displacements. It

would be preferable to treat these terms as equivalent "force" terms to be 0

moved to the right hand side of the equations. So what is really needed is

a solution scheme which treats some of the terms in the equations expli-

citly and some of them implicitly. Such a scheme is the implicit-explicit

split operator method [25]. In this method terms such as the C matrix are

treated explicitly and terms which control the stability of the solution,

such as the elastic stiffness matrix, are treated implicitly. S

4.2 The Time Integration Method

Consider again equations (2.17), (2.22), and (2.75) with all the terms

to be treated implicitly kept on the left hand side and all explicit terms . -

moved to the right hand side of the equations. -

M(q) I P(j) Z• + H q) ii + KE) V = Ro,a. (, (.)_

_E E (RV0 , _) - C(_, °. (4.3)

400
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TT

HT(a) j+ G'T(S) V0 + .LT(q) Q !IT (RV 09Q,q,q) (4.5) 0

Now, replace these three equations by a single "generalized"' equation as

follows:

iq
where q (4.7)

[ M(q) P(q) H(q)

G L pTa Mi3 a(_) (4.8)

[E(q) 0 0
5GE 00 0 (4.9)

0o 0

IT (q q(4.10)

The variable d is a "translational" variable the components of which are - S

the time integrals of V0 Similarly, 0 is a "rotational" variable the corn-

ponents of which are the time integrals of P. Thus,

d V (4.11)

p (4.12)
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Assuming all the variables in eq. (4.6) are known at time t t tn, the

equation at time tn~ tn + At is written as
n~l n

Mn+l --n+1 n+l n+1 n+l
-G 2G + i A.9 G FG (4.13)

where jG (n+l) (4.14)

!GL~G('. (4.15)

n+l n+1 4.6
16.E GEfi ) (.16

n .l G n+l *n4- (4.17)

G - G U.q

using the trapezoidal rule,

n+1 n +At ~n + n+l (.89G 9G SG94 ) (.18

~n+l n Ait (*on +*.n+l
+GS~~.~. (4.19)

Combining eqs. (4.18) and (4.19) results in the following:

Go = 4 n+1 n 4 on "In(.0
q ~q -q. tq G(.0

G G S

Substituting eq. (4.20) into eq. (4.13) yields

n+l 4 n+l n 4 on "In n+l n+1 = n+l (.1

-G At)2 (-G 2 AT -3.GG-+GE "-G

The above equation is the linearized form of a nonlinear equation and can

be solved by Newton-Raphson iteration. Letting subscript i represent the

i-th iteration number, eq. (4.21) becomes

42

.......................................------- -----



. ° .

n+1 [.4 (n+ n ) *n, + C+1 n+l = Fn+l
MG.G n Gl At 2Gn~ qG l HG. (4.22)

1 (At) i+1-  Ei i i

where

n+1 i +l ni  (4.23)
ASG S 2G. (423

1 i+l i

Rewriting eq. (4.22) a bit results in the following:

n+l 4 n+l n+l n+l n 4 "n
1 i  (t) Gi+ - i  Gi  At1 2 G

Ln+l n+l n+I Fl+I IGEi (SGi+] - S-i ) (4.24)

Then, after rearranging a few tterms, eq. (4.24) becomes
I

[Kn+l + 4 Mn+l n+l Fn+l Mn+l 4 n+l n

:GE i  (At)2 ;Gi G i  -G i  -Gi  (at)2 Gi  _G

4 n *on
(4.25)

At

Using eq. (4.20) and rewriting some of the terms a bit, eq. (4.25) becomes

Gi AF G (4.26)

where 1 n+Il 4 n1. (4.27)

F* n+l n+l -.n+l
i  . _ G i  (4.28)

G 1 1q

Thus by the use of the trapezoidal rule the dynamic equation of eq. (4.13)

has been reduced to the static equation of eq. (4.26). The '* matrix is

called the effective stiffness matrix and F is the effective force vector. .
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m

^n+l converges to within a .The iteration starts with i = 1 and proceeds until Aq G

required tolerance, that is, until

n+l 

n+l n < Tol (4.29)

SGS

where Tol is a given tolerance. For the problems considered in this work,

Tol=0.01.

4.3 Starting the Iterations

The difficulty that now arises is how to start the iterations. The

simplest way of doing this is to use the state of the structure at time tn

as a first approximation to the state of the structure at time tn+l* Thus, S

n+ n (4.30)

M n~ M n(4.30)G1 G
Mn+l

= Mn (4.31)

Kn+I .GEE1= KnE (4.32).-" IT!,

This approximation is fine for the mass and stiffness matrices since they

change slowly with time, but what about the terms in F which involve
-G. w

n+1 an G? None of these terms have been treated implicitly using eq. a

(4.18) as was done for the acceleration and elastic stiffness terms. The

reason for this, as stated previously, was because many of these terms are

nonlinear or involve nonsymmetric matrices. In addition, the stability of

the solution cannot be guaranteed if these terms are predicted using eq.

(4.30) [25]. To ensure stability, reference (25] indicates that when a

trapizoidal rule is used for the implicit part, the following explicit

"predictors" for use in the first iteration of Fn+ I must be used:
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n+l n At *on
~G qG + SG (4.33)

n+- nG (At) n (4.34)

Thus, Fn+G FG (1+lI *n+l (4.35)

o.n+1

Note that eqs. (4.34) and (4.35) are obtained by setting G = 0 in eqs.

(4.18) and (4.19). Eqs. (4.30) - (4.32) and (4.35) thus are used in the

first iteration of eqn. (4.26). The entire iteration process is summarized

in Table 3. The solution scheme described in the previous pages used the

regular Newton-Raphson iteration. A modified Newton-Raphson iteration in

which the K* matrix is kept constant throughout the iterations could also

be used. This could result in a computational savings since K need be

decomposed only once; however, a larger number of iterations will generally

be necessary than for the regular Newton-Raphson iteration.

4.4 Spacecraft Angular Orientation Determination S

In order to determine the orientation of the spacecraft at a given

time, it is necessry to determine the angular transformation between the

inertial axes and the rotating body axes. As shown in a previous section,

this transformation can be represented in many different ways, including

Euler angles or space-three: 1-2-3 angles. Let this set of three orien-

tation angles be represented by the vector e which is of course a function -

of time. These orientation angles are related to the body axis angular

velocity as follows [34]:

m e M0 (0) n (4.36)
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The M matrix is a 3 x 3 matrix whose elements are functions of the orien-

tation angles o. For space-three angles,

TS
[0 0] (4.37)

andr1
cose 2  sine sine2  coseo sino 2

M 0 cose1 cose2  -sine cose 2  (4.38)
sine 1  cos _2

For Euler angles,

T [ e (4.39)

sin cos 0 i

M - cossine -sincsine 0 (4.40)
sin o cos 0

-sin cose -coscose sine

Notethat for time periods when cose 2  0 0, space-three angles cannot be used

and Euler angles cannot be used if sine = 0. Thus it is necessary to

calculate both space-three and Euler (or any other description) so that if

one formula fails at a given time, the other can be used.

It is necessary to solve eq. (4.36) numerically and this can be done

using the following integration scheme:

2n+l 2n + 6L MA (S-n + -n+l )  (4.41)
2S

Both -n and + will have been previously calculated. Once the new e has

been calculated, it becomes possible to determine the direction cosine

matrix C which relates the inertial coordinates to the body axis coor-

dinates as follows:
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.&INERTIAL D !BODY (.2

The elements of the Cmatrix for space-three angles are given below:

C =cose coso 44a
Dii 2 3(44)

0D1 ne I sin 2 co3 sie3 coeI(4.43b)

C0D13 coso1 sine 2 case 3 + sine 3 sine1I (4.43c)

CD1= cose 2 sine 3  (4.43d)

C0D2 = sine, sine 2 sine 3 + cose 3 cose1  (4.43e)

003 cose1 sine2 sine3  cose3 sine1  (4.43f)

003 =si ne (4.43g)

002 sine1 case2  (4.43h)

003 case1 cose2  (4.43i)

The elements of the C0 matrix for Euler angles are also given as follows:

= oCcoi sino case sin p (4.44a)

001 =sin cos4* coso case sin*p (4.44b)

003 sine sin*p (4.44c)

00D21 =coso sin*p + sino cose cos* (4.44d)

002 =sino sin* + coso cose cos*p (4.44e)

002 =sine cos*J (4.44f)
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CD31 = sine sine (4 .4 4g)

CD32 = coso sine (4.44h)

CD33 = cose (4.44i)

Once eq. (4.41) has been solved for o, then the CD can be calculated using

either Eq. (4.43) or (4.44) depending upon whether space-three or Euler

angles have been computed in eq. (4.41). The CD matrix can then be used to

determine the orientation angles that weren't calculated in eq. (6) [34].

For example, suppose eq. (4.41) is used to solve for the space-three angles

and then eqs. (4.43) are used to calcualte CD. Since must be the same

for any orientation angle used, the Euler angles could be calculated by

solving for ,, e, and 0 in eqs. (4.44). The reverse is, of course, also

true, i.e., given CD, the angles O1, e2 , and 03 can be solved for in eqs.

(4.43). Table 4 summarizes the entire procedure as well as providing more

details on solving for the orientation angles given in the matrix.
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CHAPTER FIVE

NUMERICAL RESULTS

5.1 Gravitational Forces and Moments

The method developed in the previous sections is now used to analyze

several example problems. The first four examples involve the analysis of

structures which are rotating with large enough angular velocities that

most of the response occurs in a short time period of a minute or less.

Examples 2-4 involve spacecraft which rotate in this fashion. For these

spacecraft, the moment caused by the gravitational gradient is small and

can be neglected. Also, the spacecraft will move very little along the

orbital path during the short time periods which are of interest in these

problems. The spacecraft is thus treated as though it is in a force free

environment (except for any applied control forces). In example 5, the

geometry of the spacecraft is such that moments due to the gravitational

gradient are important and the time periods of interest are relatively

long, up to an hour. Thus it is necessary to obtain an expression for the

force and moment due to gravity.

In Fig. 1, let the inertial axes be located at the center of the earth

C and let Ro be the position vector of the orbiting spacecraft. Neglecting

any small changes in Ro due to deformations,

F - ° °(5.1)
'T 3Ro3 

-

where

= Gravitational constant of the Earth

M = Spacecraft mass

The element body force term eq. (2.43) in the principle of virtual work,

thus becomes as follows:
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2

= d" {d= Damped natural frequency

133 = Total spacecraft moment of inertia S

For a given 133 , the values of the control constants are determined by the

values of w and Ed which are in turn determined by the desired percent

overshoot and rise time of the response,

=n p 2 (5.23)
i + n p

2

Wtr [ l Tan (- + ] (5.24)
2 Ed

where p = Percent overshoot of the -esponse

tr = Response rise time; the time at which e first equals eref

For p = 0.01 and tr = 5 sec, the following results:

Ed = 0.82609

W = 0.902472 rad/sec

KT = 0.814456 133

KW = 1.49103 133

Using the spacecraft parameters given in figure 20 results in 133 = 15,122

slug-ft2, KT = 12,316 ft-lb/rad, and KW = 22,547 ft-lb-sec. A value of

eRef = 20 was chosen as the reference angle.

Since the spacecraft is symmetric, only half of it need be modeled.

The motion was studied using both one and two beam elements with a time .

step size of At = 0.1 second. In addition, two values of Young's modulus

were used, E = E and E = 0.5 Eo. The rotation angle for both the rigid
00
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5.5 Example 4 - Spacecraft Rotating to a Specified Orientation

In examples 2 and 3 the motion of a rotating spacecraft with

prescribed angular velocity was analyzed. In this example the more S

realistic problem of a spacecraft rotating to a specified angular orien-

tation using an applied control moment is considered. The spacecraft is the

simple symmetric dipole pictured in figure 20 and is originally at rest S

until a control moment that is proportional to the angular change desired

is applied at the center of the rigid mass. To provide damping, the

control moment is also proportional to the angular velocity. The control S

moment is thus as follows:

M = -KT (e-eref) -KW a

where KT,KW = Control constants

e = Rotation angle

8ref = Reference angle through which the spacecraft is to be
rotated

If a sensor or some other form of instrument for which pointing accuracy is

important is attached to the spacecraft, it becomes important to have a

good estimation of how e(t) varies with time.

The rigid body solution for this problem is the usual damped sinu-

soidal response typical of underdamped second-order control systems,

- d t d"

Rigid = Ref {1 - e [cos wd t + 2 sin wd t]} (5.22) 5
1 - • .. "

where 2 = KT/133 = Circular frequency

= KW/2w133 = Damping constant
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= sin y COS X (t-To) (5.20c)

3 oco 0

where = 22 11 s (5.21)

For the elastic spacecraft, the inertias of the rigid body are chosen such

that 122 = 133 > 1 1 in the undeformed structure. One beam element is used

to represent each beam and a time step size of At = 0.1 second was used in

the numerical integration.

The angular velocities of the elastic spacecraft are compared to the

rigid body case in figures 17-19. The elastic response for Q is much

closer to the rigid body case than the responses for the Q2 and a3 components

are. The three dimensional elastic deformations are coupled with each

other as well as with the angular velocities causing a very complicated

response. The state of the spacecraft at any given time would be very dif-

ferent from that predicted by rigid body dynamics alone.
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5.4 Example 3 - Three Dimensional Precessing Spacecraft

In this example the same spacecraft as in example 2 is subjected to

out of plane rotations. As pictured in Fig. 16, the spacecraft is

"spun-up" about a line in the xl-x 3 plane by applying a moment during the

time period 0 < t < To which results in the following angular velocity:- -o
S cos y [6T- 157- + 10 (T-) 3]rad/sec 0 < t <T

00 0nI = (5.l9a) -
Free Variable t > T ..i

0S

nl(t ) tany 0 < t <T 0  (5.19b)

Free Variable t > To

0 0<t <T o0<3 t <=T (5.19c)

Free Variable t> T

where y = Angle between the x, axis and _.

Values for Qo, T0 and y used in this example were as follows:

no = 0.72552 rad/sec •

= 2 sec

Y = 30

The rigid body response for t > T0 in such a situation would be for 5

the angular velocity vector to precess about the x, axis with a constant

precession rate A [35J. For rigid bodies with 122 = 133 > Ii, the angular

velocities are as follows for t > To: o

n= Po cos y = constant (5.20a) .,.

= sin y sin x (t-To) (5.20b)
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The effect of the control forces on the rotation angle is illustrated

in Fig. 13. When a control force is applied, the motion will eventually

damp out and the average angular velocity will approach zero. As seen in ..

Fig. 13, the larger the control force, the smaller the rotation angle.

Figures 14 and 15 show the tip displacements and the angular velocity as a

function of time. Note that the amplitudes of vibration decrease with time

as the control forces are applied as would be expected. One thing should

also be noted in Fig. 15. At t = To  2 sec the applied moment which is

turning the spacecraft is suddenly released. This sudden change or discon- 0

tinuity in applied moment results in a discontinuity in the accelerations

which shows up as a "kink" in the angular velocity at t = 2 sec. No "kink"

is seen in the displacements since the velocities are all continuous.

In this example it has been demonstrated that it is indeed necessary

to take into account the deformations of the spacecraft to accurately

analyze the motion.
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Another way of determining the effect of offset is to see how unsym-

metrical the motion is. In Fig. 11 is plotted the tip displacement of both

left and right beams for IR = 104 slug-ft2 mR = 100 slug and rG = 15 ft. m

The displacements can be seen to be almost the same for each beam indi-

cating that at least for the a(t) given in eq. (5.16) the motion is almost

symmet ri cal. 0

Next, the effects of these changes on the rotation of the body axes

are considered. The effects on the rotation angle of increasing the rigid

inertia has already been considered in Section 5.2. The effects of D

increased offset are illustrated in Fig. 12 which gives the rotation angle

as a function of time for rG = 0 and 15 ft. Note that for both cases the

average angular velocity is the same but that the period is larger for the p

larger offset.

5.3.2 The Effect of Control Forces

In this section the effect of control forces applied at the tips of the p

beams are considered. These forces are proportional to the tip velocity:

F C  KT VT (5.17)

where KT = Control constant

VT = Beam tip velocity

Note that
!T = x rT + (5.18)

rT = Position vector of beam tip

uT = Elastic velocity of beam tip

Three different values of control constants are considered, KT = 0, 5, and

20 Lb-sec/ft. For all three cases, the rigid mass and inertia were mR =
2R

500 slugs and 1R - 5(10) slug-ft with an offset of rG = 5 ft. Once

again, a time step of 0.1 sec was used in the numerical integration.
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5.3.1 Parametric Studies

For all the problems in this part, the beam properties were kept

constant and only the properties of the central rigid mass were varied. .

The way these changes affect the frequency of vibration of the beams can

thus be determined.

The equations of motion were solved using a time step of At = 0.1 sec.

and one element to represent each beam. The resulting beam periods of

vibration are summarized in table 5. Note that the period increases as the

size of the rigid mass increases. As the rigid inertia grows smaller in

comparison to the inertia of the beam, the problem approaches that of a

free-free beam vibrating in its second mode shape. For a 200 ft. length

beam, the linear second mode frequency results in a period of 2.2 seconds.

As the rigid inertia grows very large in comparison to the beam inertia,

the problem approaches that of a cantilever beam attached to a very large

rigid mass. The linear period for a 100 ft. cantilever is 6.4 seconds. In

Table 5, the periods will vary between these two extremes.

Now, what about the effect of the offset? As can be seen in Table 5,

for a given rigid inertia as the offset increases so also does the period.

However, notice that the change in period is much less as the rigid inertia

increases. Also, to determine the effects of varying the rigid mass while

keeping the rigid rotary inertia constant, the following was done. For

IR = l04 slug-ft 2 and rG = 15 ft, rigid masses of mR = 100, 500, and 1000

slugs were used. The resulting periods were all the same value of T = 3.3

sec. indicating that mR has little effect on the period. What was affected -.

by mR was the translation of the body axes. These, however, were very

small and never exceeded one foot and thus had very little effect on the

rest of the motion.
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5.3 Example 2 - Rotating Spacecraft with an Offset Center of Mass and

Applied Control Forces

In this example a simple spacecraft consisting of two slender aluminum O

beams attached to a central rigid mass is analyzed (Fig. 10). The rigid

mass has a mass moment of inertia of I a mass of m and a width of 2rRIR' c

A set of body axes, xI, x2 and x3 are fixed in the spacecraft and rotate 0

with it. The centerlines of the beams are originally aligned along the

x, axis and the center of mass of the spacecraft is offset a distance

rG along the x2 axis.

The spacecraft is originally at rest but at time t = 0 a moment is

applied to the spacecraft for T0 seconds such that a given angular velocity

is achieved. This angular velocity was chosen so that the rigid mass would O

rotate through a given angle in the x, - x2 plane and then come smoothly to

rest at t = To. After T seconds, the applied moment is released and the
0 0

angular velocity becomes a free variable. The particular form chosen for •

the angular velocity was as follows:

J l + sin -( ")] rad/sec 0< t < To

a(t) = (5.16)
Free Variable t > To0

For all the problems solved in this example, a = w/20 rad/sec and To = 2
00

seconds. Note that if rG = 0 the problem is symmetric and only one half of S

the spacecraft need be modeled. However, if rG * 0, then in general the mo-

tion will not be symmetric and the entire spacecraft will need to be modeled.

The results of this example are divided into two parts. In the first

part, a parametric study is done in which the effects of varying the rigid

mass and inertia as well as the center of mass offset are studied. In the

second part, the effect of applied control forces is examined. For both O

cases, eq. (5.16) is used during the "spin-up" period of motion.
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Also note that the larger IR is in comparison to I the closer "Avg will be

to the rigid body angular velocity no

Now eq. (5.15) can be used to explain the behavior of the beam in

figures 8 and 9. At t = 1.0 sec the beam is moving away from the body axis

and thus HDo < 0. At t = 3.3 sec. the beam has reached its maximum displa-

cement relative to the body axis and thus Ho 0. At t = 7.0 sec. the

beam is leading the rigid body motion and HDo > 0. Thus the average angu-

lar velocities pictured in figure 8 are as predicted by eq. (5.15).

Similar results are obtained in figure 9 except that with a larger inertia

ratio, all the averge angular velocities are closer to n as predicted

again by eq. (5.15).
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where I = Mass moment of inertia of the beam about the shaft

centerline

Also, let

HD = HT (5.11)

The value of IB will change only slightly as the beam vibrates and for the

purposes of this discussion it is sufficient to consider it to be a 0

constant. The conservation of angular momentum requires that

(I + IB) Qo + HDo  (IR + 'B) Q + HD (5.12)

where H = (HD)t=T

Solving for R,

Q + (H- H0) (5.13)
0 1o R + I B  Do  D

The angular velocity will be constantly changing, but what will its average . .

value be? Taking a time average of eq. (5.13),

Avg o + IB [Ho - (HD)Avg] (5.14)

Since the beam vibrates about the equilibrium position, (H will be

small and can be negleccted. Thus,

PAvy Q + + i) Ho (5.15)

So if

HDo < 0 then QAvy < 0 o

H Do > 0 then f~g • n . ii..ii-.

then Avg >0

0 then v=0
Doo Avg. 0.
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The results for case 2 are presented in figures 8 and 9, which show the

variation of the rotation angle of the body axes with time. In figure 8,

IR/IB = 0.5 and in figure 9 IR/IB = 1.0. For both cases, TMOM = 1.0,3.3,

and 7.0 seconds. In both figures, the "average" angular velocity is

greater than n for T 7 and less than s ° forT = 1.0 while for

TMOM = 3.3 it is about the same as o. Note also that all the angular

velocities are closer to so for the larger inertia ratio in figure 9 than

in figure 8.

In order to understand the behavior of the beam in figures 8 and 9, 0

consider what happens when the moment support is released at t = TMOM and

the angular velocity becomes a free variable. For t > Tmom, there is no

longer an applied moment turning the shaft and the angular momentum will ,

remain constant. The angular momentum is determined as follows:

H dr
- fA= p(rx )dv (5.6)

v

drBut P x r +u (5.7)

Substituting eq. (5.7) as well as eq. (2.14) into eq. (5.6) and

rearranging,

pA (f p7r)n+N* dv)* (5.8)

vv

Using eqs. (2.29) and (2.30) results in "

: I a + H q (5.9)

For this particular problem, .A' I and P are scalars and _

I =IR + IB (5.10)
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Case 2 - _(t) free for t > T m.

[6 (t ) 15 t )4 + 0 ( rad/sec 0< t < T
0o~ 7-0 15 7-F 0 0-0 0

(t) = o rad/sec To  t< TMOM

Unknown variable t > Tmom

For both cases, values of o= w/lO rad/sec and T = I sec were used. The

0

equations of motion were integrated using a time step of At = 0.1 sec and

one beam element was used. S

The results for case I are shown in figures 6 and 7. Figure 6 shows

the angular displacement of the tip of the beam as it rotates. This is the

angle between the inertial x, axis and a line drawn from the origin of the S

body axis to the tip of the beam at time t. The body axes and inertial

axes coincide at t = 0. In figure 7 is pictured the orientation of the

deformed beam at different times. The dashed lines represent the positions

of the x, body axis at the given times and coincides with the motion of a rigid

beam. The solid lines are the shapes of the deformed beam and the arrows

represent the displacement of the beam tip. .

The linear natural frequency for this beam as given in Table I is =

0.547 rad/sec which corresponds to a period of 11.5 sec. Note that w1>o

and thus it would be expected that the beam would complete about 1.7

vibration cycles about the rigid body position during the 20.5 sec. it

takes for the shaft to complete one rotation. As can be seen in figures 6

and 7, this is exactly what the beam does. For the first 6 seconds it lays

behind the rigid body motion, then for the next 6 seconds it leads the

rigid body motion completing a cycle in 12 seconds. Thus the beam vibrates

back and forth about the rigid body motion.
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5.2 Example 1 - A Beam Rotating About a Fixed Axis

In this example a thin uniform aluminum beam is fixed to a shaft which

is rotating about its centerline with an angular velocity n. The shaft has

a mass moment of inertia of IR about its centerline which is fixed so that

no translations occur. The radius of the shaft is negligible compared to

the length of the beam. A set of body axes x,, x2 and x3 are fixed in the

shaft and rotate with it. At time t = 0 the beam and shaft are at rest and

the beam is aligned along the x, axis. The situation is illustrated in

figure 5.

Two different cases are considered. In case I the angular velocity 1

is a specified function of time for all time. The only unknowns are the

nodal displacements and velocities which can be found using eq. (2.75) with

s and n given and Vo = =0. For case 2, the angular velocity is spe-

cified only for t < TMOM after which it becomes a free variable. The time

period 0 < t < TMOM is the "spin up" period during which the beam is acce-

lerated from rest to a given angular velocity. For t > Tmom , the angular

velocity becomes an unknown variable and eq. (2.28) must be used to solve .0

for it. For each case, the angular velocity during the spin up period is a

smooth polynomial. The two cases can be summarized as follows:

Case I - si(t) given for all time

t4 t 3
no [6 (t)5 .15 ( + 10 s] rad/sec 0< t < T

0 0 0

-o  rad/sec t > TO
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T ( dv) 0 0 (5.2)

or

LB - ('3~) PRE (5.3)
R0

The moment due the gravitational gradient can be shown [34] to be as

follows.

M - f r) (-o dv (5.4)

where

r r d (5.5)

Note that r G is the instantaneous location of the center of mass.
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body case and the elastic cases are pictured in figure 21. Note that for E

= E0, the response time is still about 5 seconds but that because of the

elasticity of the beams, the peak overshoot is near 10%. Also, it takes 5

about 12 seconds before the orientation does not vary more than 1% from 200.

The more flexible beam with E 1 E still has a peak overshoot of 10% but2 0

the rise time is increased to 5.8 seconds and it takes even longer for the 0

rotation to settle down to within 1% of eRef. Figure 22 shows the actual

orientation of the spacecraft for E = E at t = 5 seconds. The beam tip

lateral displacement are plotted in Figure 23. Note that both figures 0

illustrate the large deformations which occur.
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5.6 Example 5 - Gravity Gradient Stabilization of a Spacecraft in a

Circular Earth Orbit

The previous example examined spacecraft with fairly high rates of

rotation during relatively short time periods. This example considers a

slowly turning spacecraft over a time period which is a significant percen-
O

tage of the orbital period. Consider the spacecraft pictured in figures 24

and 25 which consists of a single long slender beam attached to a rigid

mass. The spacecraft is in a 200 mile altitude circular Earth orbit and at

time t = 0 the beam axis is at an angle B = 450 to the orbital radius vec-

tor R The spacecraft is rotating with an initial angular velocity

W"o =  = 1.1512(10- ) rad/sec. and thus B = 0. The gravitational

gradient causes a moment (eq. (5.4)) which tends to align the beam axis

with the orbital radius vector. A control moment Mc is applied at point 0

in the rigid mass as follows:

Mc = LB(5.25)

where LB = Control constant
O

In order to determine the values of L to use, consider the rigid body

problem with small B.

B 0

B' + 2lip + P2B = 0 (5.26)

where
p2 _ 3Uo I2 " Ii"- ".
2 2 l (5.27)

3 3133 j

S
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LB

U r =(5.28)

With 1 : 1, the system becomes critically damped, thus for an underdamped

system, choose

L < 2pI 3 3  (5.29)

The spacecraft is in a 200 mile high orbit and thus the orbital period is

5458 sec. Two different sizes of rigid mass are considered: S

Case 1 Case 2

mR = 5000 slugs mR = 1500 slugs

4 2 4 2IRI 10 ft-lb-sec IR1 10 ft-lb-sec

= 108 ft-lb-sec 2  = 2.43 (106) ft-lb-sec 2

22 22

= 3(108) ft-lb-sec I = 3(106) ft-lb-sec2

The size and material properties of the beam are identical for each case. . ,

The problems were tested using both a one and two element model with a time

step of At : 10 seconds.

Figures 26 and 27 show the results for case 1 for both free vibration 5

(no control forces) and a control moment with LB = 4.5(10 ) ft-lb-sec.

Note that even though fig. 25 indicates that large elastic displacements in

the beam are occuring, the motion of the rigid mass is almost the sames as _*

that for a rigid body. Thus, for such a large rigid mass, the elastic .

displacements of the beam have little effect on the variation of the angle

8. _0 _
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The results for case 2 are pictured in figs. 28 and 29. For no

control forces, the elastic deformations in this case do have an effect on

B, even though it generally follows the rigid body case. With the control

force added, however, the motion for B is nearly indentical to the rigid -

body case.
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CHAPTER VI

CONCLUSIONS

The numerical results obtained in Chapter V indicate that the method

developed here is capable of determining the time response of unrestrained

flexible structures which are undergoing large elastic deformations coupled .
0

with gross nonsteady rigid body translational and rotational motions with

respect to an inertial reference. The use of an implicit-explicit split

operator numerical integration scheme has resulted in stable solutions for -

all the problems tested. In addition, the example problems indicate that

the method is capable of analyzing problems which include the effect of

control forces. Although only beam elements have been used in this work, .9
the equations in Chapter II are quite general and will apply for more

complicated elements such as plates and shells. Also, the method can be

used to solve problems which include more complicated types of motions such

as spacecraft deployments involving rotations and relative velocities bet- ..

ween different spacecraft parts.

Jo
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Table 1

Natural Frequencies of a Linear Cantilever Beam Modelled by One 3-Node
Timoshenko Element

L/t = 100

Shear Factor W "2 W3  04

(Rad/Sec)

1.0 0.5470 4.502 8417 11,287

0.5 0.5470 4.499 5956 7,981

0.1 0.5470 4.478 2677 3,570 0

0.01 0.5448 4.259 891 1,132'-

Table 2

Natural Frequencies of a Linear Cantilever Beam Modelled by Two 3-Node
Timoshenko Elements

L/t = 100

Shear
Factor WI w2 3 4 5 w6 7 w8

(Rad/Sec)

1.0 0.5222 3.533 11.88 49.85 5271 9900 11,287 11,294

0.5 0.5528 3.549 11.87 49.39 3763 7007 7,981 7,988

0.1 0.5311 3.524 11.74 46.10 1808 3157 3,570 3,582

0.01 0.5312 3.411 10.62 29.94 905 1073 1,132 1,173
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TABLE 3

Summary of Newton-Raphson Iteration Scheme

1. Predict quantities for first iteration, i=-

qn+l n.

qn+1 n n
-Gi  2G

. n+1 _ 4 'n "*n2G i  t 3G " 6-

-'n+lI n "n ( *_ * 2-n
.6i =q + At q-G +  4 - , "

qn n At "*n -

2. Form Modified Stiffness Matrix and Force Vector -
n+l) + 4 n+l

i:KGE -Fi At) MG (atGi ,].,.

1'+

F* n+l Mn+ n+l _in.l

-Gi -LG tq-G i  MG - 8 SGi
F~. = ~ ' .G - o

3. Solve for incremental displacements

aqn+1  1 *

i  Gi "_i

4. Update or correct the displacements, velocities and accelerations •

n+l =n+l + A n+l

on+1 4 n+l n 4 'n *n
2G -( Ga_ G - _ G _G1+1 = (At) 2  i

70
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TABLE 3

n+l n At **l + 'On

-i+1 2 i+1 -

n+1 n+l

n+l n+

1+1 +1

5. Check to see if iterations have converged

n~l Tol

G.*1+1

If yes, go to step 6

If no, i =i + 1 and go to step 2

6. Update angular orientation (see Table 4)

7 tn+l =tn+l +A

8. If tni<
-~ tmax, go to step 1

if tn+ >tma ,stop
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TABLE 4

SPACECRAFT ANGULAR ORIENTATION DETERMINATION

1. Update the space-three angles

I f E) 900 Go to step 4

Otherwise, use eq. (4.39) and (4.40)

At
_n+1 -n N M (2n + nl

2. Calculate CD using eqs. (4.45)

3. Calculate Euler Angles

a) If IC3 1, go to step 3c .

otherwise

e=Cos 1  (C 33) 0 < < 7r

C

=cos-1 (32) 0 < <7

Then

Jaif C 3 >

13 =

12T -a if C 13 < 0

and

8 if C3 > 0

1T w- if C3  < 0

stop

c) 0. Oif C33 1

i if C 33 =-1
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TABLE 4

- 0

Cos (C22) 0 < T

Sif C21 > 0

27r -a if C2 1 < 0

stop

4. Update Euler Angles

Use eqs. (4.41) and (4.42) S

n+l -n + - ne + "n+l

5. Calculate C using eqs. (4.46)

6. Calculate Space-Three Angles

a) If C131 = 1, go to step 6c

Otherwise,

02 sin- 1  (C31) -. < < "2"
232 " - 2

b) Let a = sin -  - 7 <3 <

Co

C21 7TBsin " I  Co 2)'cos 02 " < < -_ .

Then,

a if C3 3 >0 -
01

e = r-c if C33  > 0

3 if C11 > 0
W-{ if C11 < 0

Stop :1
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TABLE 4

C) 60 - fC3

L ~~ C31 =-

2--

if C 2 <0

Stop31

Let sn- I -C a

Stop
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TABLE 5

Period of Vibration of the Beams for Various Rigid Body Inertias

offset r6  (Ft)
6S

0 5 15

IX (104), mRPeriod of Vibration (sec)
R mR

1.0, 100 2.7 2.8 3.3

2.5, 250 3.3 3.4 3.9

5.0, 500 4.1 4.2 4.5 -

20, 2000 6.3 6.4 6.4
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Figure 1

Reference Axes for an Unrestrained Deformable
Body
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x3 3

3 
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X1
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Figure 2

Beam Large Displacenent Geometry
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Figaure 3
Rotation Angles

(a) Euler Angles
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Figure 3

(c) Body -Three: 1-2-3
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Figure 4

The Three Node Eighteen Degree of Freedori Bear, Elemient0
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Figure 5
0

Example 1I Beam Rotating About a Fixed Axis

r -. ~L __ _ _ _

r << L

L =100 ft.

A- 1 ft 2

I= 0.08333 ft 
4

I = 0.08333 ft4

P 5.22 slug/ft'

E =1.44(108 lb/ft

G =5.54(10) lb/ft
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j Figure 7

Large Displacements of a Rotating Beam
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Figure 10

Example 2 -A Rotating Spacecraft With an Offset Center of
Mass and Control Forces

X2

F cQ(t) F

L 2r L -- --

Beam Properties:

L =100 ft.

A =6.55(10-2 ft.

I 1 8.18(10 ft4
yy z
P= 5.22 slug/ft'

E -1.44(08) lb/ft3  _

G =5.5400) lb/ft

r = 5 ft.
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Figure 25

Spacecraft Geometry

x2

2S

xl

r L

Beam Properties: Rigid Mass Properties

L = 450 ft. See Text

A = 6. 545(10 2)ft'

I = I 4.092( 10-4) ft4
yy z
P= 5.22 slug/ft'

E =1.44(108) lb/ft2

G =5.54(10 ) lb/ft2

r= 50 ft.
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Figure 24

Example 5 -Gravity Gradient Stabilization
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Figure 22

Spacecraft Orientation at t =5 Sec

2 Orientation

at t =5

e =20.57
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Figure 20

Example 4-Spacecraft Rotating to a Specified Orientation

xA

x2

L L

xl

e0 e0(t) = Ref

Beam Parameters:

L=50 ft

* A = 0.02182 ft' 2

I =I = 3.0419(10~ ft4
yy z

* .p 5.22 slug/ft3

E 1.44(10 8) lb /ft
3

G 0 5.54(l107) lb/ft3  0

Rigid Mass Parameters:

mR 50 slugs

'R 11= IR 22= 10' slug-ft,
11 22

I = 2.5(10) slug-ft,
33
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Figure 16

Example 3 -Three Dimensional Precessing Spacecraft

x 3

x 2

L 
x

Beam Properties: Rigid MassProperties:

A2

L = 100 ft. 1R 6.1(00)sugf

A = 0.0654 ft2  11

I = z = 0.008185 ft4 I 'R2  =5.l)su-t

p =5.22 slug/ft'

E =1.44(108) lb/ft2  I R =4.829175(l0)su-t

G =5.54(10 7) lb/ft2  33

rG 5.0 ft. mR 500 slugs
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APPENDIX A - ORIENTATION MATRICES AND VECTORS

0
Let a, , and a3 be a set of mutually orthogonal axes fixed in the

undeformed beam, centered at the centroid of the cross-section with

a, tangent to the longitudinal axis of the beam. Also, 081 082, and

0 83 represent the space-three 1-2-3 orientation angles of the beam. Let

dij and eij be the ijth element of the matrices D and E respectively. Then

these elements are as follows for k = 1,2,3.

0S

dkl = (sin°e2 cos°81 cos 0 83 + sinoe sin 0 63 ) alk + (sin°a2 sin 083

cos°e1 - sin°e1 cos°0 3) a2k + cos°e1 cos°e2 a3k (A])

0S
dk2 = sin° cos°82 cos0 3 alk + sinOf sin° 3 cos a~ -

sin 0° 2 sin 081 a3k (A2)

dk3 = -(sin 0e sin 0
2 sin°

0
3 + cos 0 

1 cose 3 ) alk + (sin 081 sin 002

cos0e3 - sin 03 cos°81) a2k (A3)

eki = (-sin 0 l sin°0 2 cos°0
3 + sin°B3 cos°O]) alk - (sin°0 1 sin°82

sin°0 + cos0 Cos a2 k - sin°0 Cos°0 a (A4)
31 3o~ ) n 1  23

cos 20k(4
ek2 = cos°e 1 cos°e 2 cos 083 alk + coso08 sin08 cos 0 82 a2 k

sin 0e2 cos
0 l a3k (A5) S

ek3 = (-cos 0
1 sin082 sin083 sinin0

1 cos 083) alk + (cos 0
1 sin 062

cos 0
3 + sin°o1 sin 0° 3) a2k (A6)
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Also, the change in directional axes is as follows:

For k = 1,2,3
0 ! 0

(0a2 - a2)k (sin°el sin°e2 cos ° 3 - cosoel sin 0e3) alk +

0 0.0(sin sine 2 sin°B3 + cos e cos 0e3  1) a2k +

sine cse 2 a3k (A7)

00
(0a3 _ a3)k = (cos~e1 sin~e2 cos°e3 + sin~e1 sin°e3) alk +

(cos'e, sin 0
2 sin

0
3 - sin°e1 cos e3) a2k +

(cosoel cos 0
2 - 1) a3k (A)

Note that eqs. (A7) and (A8) are related to the ) and E matrices as

follows:

Oa a2k dk i,k = 1,2,3 (A9)
a~i

a i (0a; - a 3)k  eik i,k = 1,2,3 (AlO)

Finally, the transformation matrix T between local and global stresses

and strains is as follows:

2 2 21112aa 3  1
a 11 a12 a13 2a11a12  2a11a13 2a12a13

*_ 2a11a2 1  2a12a22  2a1 3a2 3  a11 2 2+a12 2 1 a11 2 3+a1 3 2 1  12a2 3+a1 3 2 2

2alla 3 1 2a12a3 2  2a13a3 3  a11 3 2+a12a3 1 a11 a3 3+a13a3 1 a12a33+a13a32L !
(All)

107.
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APPENDIX B

ELEMENTS OF MATRICES OF WHICH THE STIFFNESS MATRIX IS COMPOSED

0

The Dk Matrix

-0 Dk k W k =1,2,3

The Dk 0 k and 2k are partitioned into three 3 x 6 submatrices as follows:

D k = (k kz kQ)](3
-z -zDY1 (Dk)2 -3

Now, let (drsi and (ersi be the elements of the D ad Ematrices

respectively (see Appendix A) and Ni be the ith shape function, then for

i,k =1,2,3

aN.
0 0 0 0 0

0 0 0 Ni(ell)i Ni(e 12 ) Ni(e 13)i

0N 0 0 0 0

(2) Ni(d ). N.(d ). N.(d (5-D 0 i000 211 * 221 23)i 0 )

0 o 0 Ni(e 2 i Ni(e 22)i Ni(e 23)i~

108



3N.
000 0 0

D ) i(d ) Ni (d ). N. (d ) (B6)
31131 32) 33)i

0 o 0 N1 (e3 ) N1 (e32 . N( 3

aN. aN. aN.
60 0 0 -(dk1) I ~(dk) --{(dk)

(Dk = 0 0 0 0 0 0 (B37)

p0 0 0 0 0 0 .

aN . aN. N*

0 0 0 -,,(ekl -Le --

(D') - 0 0 0 0 0 0 (B8)

o 0 0 0 0 0

The D Mat ri x

First, rewrite eqs. (3.64)-(3.66) as follows for k 1,2,3:

a& ~ h k O)' z Ozk (g

h (BIO)
ay Y

'3k (Bli)

az Zk

109



0

where
3 aN

h (0 Uo k)i  (B12)

3~ a

3E

3 3N.

hk= Z N. (ak - a~k) (B16)--"-
11

3 LN.
1 2

"L'
3 

1
= 1 L( a ,k  a 3 k )i  (B14)

3

hyk = i Ni(E) ( a k - a 2 k Ii  (Bl5)

3

0 0

h zk =lE Ni(E) (a a k - a 3k) i  (B16)

Note that j- will be a constant. Thus the derivatives {-- . T can be written

using eq. (55) as follows: m-.

aouk ik. -

= tkj + y ~j+ z tkj k,j =1,2,3 (818) - . .

tkj = Ljl hok +Lj 2 hyk + Lj3 hzk (BI9)

10

Ykj = Ljl oyk (B20)

Zkj = L33 hz (821)

00

Finally, by substituting the derivatives in eq. (B18) into the expressions .--b

110 eo ( a f o

a Uk o
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for D given in eq. (3.52), the elements of DCo DCY , and DCz can be given as

follows:

1+01l 0 0 021 0 0 °31 0 0 "
0. i::0.2-0

0 °12 0 0 I+°22 0 0 t32 0

0 0 0
013 0 0 o23 0 0 1+°33

o 0f12 I+011 0 I+°£2 0 t£32 °£31 0

0 0 +° 1 1 02 0 021 1+033 0 01

o0 3 0 0£23 I+°£22 0 I+°£33 £32

(B22)

Y 0 0 Y 2  0 0 Y£3 I 0 0

0 Yt12  0 0 Y22 0 0 Y32 0

10 0 Y 3  0 0 Y£3 0 0 k3326:.y
Dt Y y ,"31L 0:

12 Y1I 0 YZ22 Y£2 1  0 Y32 Y3 0 , . .

13 0 Y 11  Y 23  0 Y£21  Y£33  0 3

o Y£1 3  Y£12  0 Y'23  Y'22  0 Y'33  Y£3 2

(823) .

z z zx1 0 0 £1 0 0 £1 0 0
0 Z' 12  0 0 z£22  0 0 Z£32  0

0 0 z13 0 0 z 0 0 z33
D Z Z Z Z' "

z z z z z
£13 0 Z il 23 0 £21 £33 0 £3l

z z 0 z z z
13 12 23 £22 0 £33 £32

(B24)
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APPENDIX C

DETAILS OF MATRICES AND VECTORS USED IN THE MOMENTUM EQUATIONS

LINEAR MOMENTUM EQUATION

The Element pMatrix (18x3)

e p N*T dV (Cl) 0

Ve

Substituting eqs. (3.18) and (3.13) into eq. (Cl) and carrying out the volume

integral results in the following 18 x 3 matrix for P:

T- pA, [I C3
2e = [i3 0 413 0 130] (C2)

where x = Beam element length

13 = 3 x 3 Indentity Matrix

0= 3 x 3 Null Matrix

The G Matrix (3X3)

.7 + p Td v + p~ + 0 d dv (C3)

V V

GT =f p r dv +f p 0u dv +f p du dv (C4)
V v v

Now,

GT f pr' dv Matrix of Center of Mass (C5)
Position at t =0

V

In many cases Go = 0. Substituting eqs. (3.14), (3.17), (3.18)-(3.21) into

eq. (C4) and integrating over the volume results in the following:

11 2 .
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G GT+ M i*(C6)
where M.= Total Mass

f P(ou + Au)dv = I T Aj) (C7)

Note that is the change in the center of mass from the initial unde-

formed state. Eq. (C6) can be simplified to eq. (C8). Note also that the

use of the P matrix is after its assembly.

_ = M(C8)

where = +(Cg)

r '~ p ro dv (CIO)

The f c Force Vector (3x]) 74i

f f p r dv r(L + %AU + AU) dv (dlI)

v v

Using eq. (C7) and (CIO), eq. (CII) becomes

=c M~ rG (Cl2)

ANGULAR MOMENTUM EQUATION

The iT Matrix (303)

pr 22d dv - pr2 dv (C13)

V fV i1 V.

113
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In these integrals, VR represents an integral over any rigid parts of the

body and the summation is over all the elements. The position vector of a
th -

general point in the cross section of the i element can be written as 0

follows:

r + y Oat + z'a' (C14)=2 -=3

where Or = Or + 0u 0 (C15)

As before, Or o represents the undeformed position vector of the cen- S

terline of the beam element and u is the initial displacement vector of

the centerline. The Au vector is neglected in these integrals since it is

small and the terms are of second order. Using eqs. (3.12) and (3.14), Or S

is written as follows:

3
O r N.( )( 0 r + 0u ) j  (C16)

- =1 - -0

where [u q = q ] (C17)
- [ 0q6j-5  q06 -4 6j-3 ]

Note that Ouoj are the x, x2, and x3 displacements of the jth node.

Similar expressions exist for Oa and Oat as follows:

3
E N. ( a'. (C18)

-2a =1 j() -2j

3 5
N Oa'. (C19)

- i=l -,) 3

The a' and a'j terms can be evaluated using eqs. (A7) and (A8).

114 _
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-. 0 40

Thus, the finite element approximation to r is found by substituting eqs.

(C16)-(C19) into eq. (C14):

3 0
r= E N.(E) (0r + °u + y0a' + z~a) (C20)

j=l J -o -o =3 j)

If eq. (C14) is substituted into eq. (C13) and the area integrals carried

out, then

N 6

1T = - - [pA ° dt + p I dt + p lyyi °_i dx]

L. Li  Li  (
1 1 L1  (C2l)

The IR matrix is the inertia matrix for the rigid parts of the structure

which is found in the usual way. The integrals along the length of the •

beam in eq. (C21) are evaluated numerically. They can be done exactly

using three point Gaussian integration:

i 3
°di E E Hk (C22)

k=l k

t.3
0-r2 1 °.2 (k) Hk r = 2,3 (C23)

J k=l

Li

The 0-F(Ek) and Oj'
2( E) matrices can be evaluated by using eqs. (C6) -

(C19) with E =k"

The Element H Matrix (18x3)

HT  p r N* dV (C24)

V e

115
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S

Substitute eqs. (3.18) and (C14) into (C24) and integrate to obtain the

following for the i th element:

T0

HT= pAi -72 N dt + pIf a N* de + p I rf ._' N* d x
- _0~ de -o 1J yyiji Li Li Li l ; -

L L.i (C25)

Once again eq. (C25) is evaluated numerically as follows:

H T  p t 1 3. .

- kl £Sk)~O~ko-,ZZ ()N*( ~k) + IY° _3( k)NZ( k)]Hk 0k- [i F Ek)N*(E yiO ) [ *E)k zzi  !(2k -y Y)]i

(C26)

The H matrix is assembled in the usual way.

The Mcent Vector (3xl)

N 2 r .r v

-cent p " r dv =- 2  r dv + - r dv (C27)i=l .
v fv R  v i . ,.V yR

Let Mcent p-F r dv (C28)
Rf --

It can be shown [34] that the eq. (C28) is equivalent to the following:

(M PIP3 I 1l (2p 2 Q23i i>
(McentR)l R 12 3 R13 "12 R23 - R2 2-IR33) 2 3

(C29)

(McentR)2 = IR23 fl 2 " IR|2  123 3 3R3 ( -(IR33"Rli) 3.-

(C30)
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(centR)3 IR13 r Z - 'R23 "0~3 -'R1 2 ("] -2) R11f'R 22  Q 'V12

(C31)

Note that IR* are the inertias of the rigid parts of the structure. The

rest of Mcent is found as in the previous sections, i.e., substituting eq.

(CIO) into eq. (C27) and integrating. Thus,

N p. 3

letMet + i 2~ [Ai 6E(~k o2r(Ek)
- -centR i~l k=l -

+ )]H)OI()+ (C32)

The Mo Vector (3x1)

Mcor r ~ 2Jf pr Q u dv (C33)

V.

Within an element, u can be found using eq. (2.14):

u = N*2 (*+ y N* + z N) q o+ + zy.z (C34)

where

. o *0 q(C35)

u N q (C36)

= ~ q (C37)
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Substituting eqs. (C35) - (C37) as well as eq. (C14) into eq. (C33) an

integrating results in the following expression for Mcor:

N 3
t'co = .E E [A o()Yo(k

=1 k=1

+1 0azi~ + 1 OCi()-Qu C)]H k (C38)

2o.
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APPENDIX D

DETAILS OF THE MATRICES AND VECTORS RESULTING FROM THE INERTIA TERM IN
THE PRINCIPLE OF VIRTUAL WORK

The Element Mass Matrix M (18xl8)
m0

M= p N* dv (DI)

Ve

Substitute eq. (3.18) into eq. (DI), evaluate the matrix products and

integrate over the area to obtain

M = + My + M z (D2)

where

0 N*

Mo p A _ dt (D3)

L

y p IZZJ _NTN dt (D4)

L

M= z pyJ N*z de (D5)

L

These integrals can be evaluated analytically using the expressions for

N* and N* in eqs. (3.19) - (3.21). The results are as follows:

119 _
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41 0 213 0

0 0 0 0 0

-33pAt 153 2 21 0(6
0 0 0

SYMMETRIC 4L3 0.

0

2. 0 0 0 0 00

4DI- D1-D2 0 -D1D3

pI t 0 0 0 0
= ZZ- (D7)

-2-2 22-3

SYMMETRIC 0 0

0 0 0 0 0 0

4T2T -E E

pIt 0 0 0 0
!!y 08)

=2-2 2f

SYMMETRIC 0 0

4E~E

where !1 3 x 3 Identity Matrix

0 =3 x 3 Null Matrix
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The Element Gyroscopic Matrix C

C= 2J p N*T  N* dv (09)

Ve

Using es. (3.18) in Eq. (D9) and evaluating the integral as above results in:

0
C c+C + C z  (0io)

0 0 27 0 - 0

0 0 0 0 0

ITT 0 U" 0Co 1! .. ()l
T5 0 0 0

SYMMETRIC
4 0

...
0"

0 0 0 0 0 0T- ob ., o o--
40 RQ 0 2DT1 2 2  0 -D]

plIzt 0 0 0 0

-y 16DT-0  o T- (012) 0
SYMMETRIC -2-2 - D".2" '

0 0 0 0 0 0

£z~T T= _ o oa:::::0E2E 2EE 0 -E

PI 1 0 0 0 0

- ,T -. T--:

16ET 0 2ET

SYMMETRIC -22
0 0
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The element Force Vector Due to Centrifugal Force F
-c

F (L*Tn r+ uo) dv (D14)

Ve

But by using eq. (C14) and (015),.

r: + u O r + 0u + y Oa' + z0al (D15)
-o -o - 0 -o 2 -3

As in Appendix C, use numerical integration to evaluate eq. (D14):

h3

Fc Pt E [A N*T() 72O(k + Iz N*T( -2 'a(

+ I *
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